ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
O. J. Wallace
Nuclear Science and Engineering | Volume 78 | Number 1 | May 1981 | Pages 78-85
Technical Note | doi.org/10.13182/NSE81-A19609
Articles are hosted by Taylor and Francis Online.
Calculations based on the integration of the point kernel over a finite source region are widely used in obtaining gamma-ray fluxes, dose rates, and heating rates. For most cases of practical interest, this integration must be done numerically. The relative merits of the trapezoidal rule, Gauss quadrature, and the semi-Gauss automatic quadrature algorithm of Patterson are discussed as they apply to the integration of the point kernel. The Patterson algorithm is superior to other quadrature algorithms for this application because it allows results to be calculated to a predetermined relative error, wastes no function evaluations, is accurate, and supplies relative error data along with the answer. It is efficient with respect to both engineering and computer time. The implementation of this algorithm for point-kernel integrations is described in detail.