ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jiri Stepanek
Nuclear Science and Engineering | Volume 78 | Number 1 | May 1981 | Pages 53-65
Technical Paper | doi.org/10.13182/NSE81-A19606
Articles are hosted by Taylor and Francis Online.
The transport equation in slab geometry is solved by means of the DPN “surface flux” method, based on a Pn polynomial expansion in both angle and space and a double Pn approximation of the angular distribution at interval surfaces. The method, which has been incorporated into the multigroup transport code SURCU, is compared to a number of different codes such as ANISN, DIT, etc. For a given accuracy in the flux SURCU turns out to be faster than other codes since it needs fewer spatial flux moments than other programs need regions or space points. In addition, the required DPN surface flux approximation is much lower than the corresponding Sn approximation. A number of similarities between the present method and both Sn theory and collision probabilities are discussed.