ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
K. Przybylski, J. Ligou
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 92-109
Technical Paper | doi.org/10.13182/NSE82-A19597
Articles are hosted by Taylor and Francis Online.
After a short presentation of the Boltzmann-Fokker-Planck (BFP) equation, which was derived in a previous work, two numerical approaches to solve this equation are investigated-the multigroup method and a diamond scheme applied in a consistent way to space and energy variables. Because of the parabolic nature of the Fokker-Planck operator, it is shown that the standard neutron transport codes cannot solve such an equation. With the one-dimensional time-dependent BFP-1 code, many numerical results have been produced. All deal with the transport of charged particles in dense plasmas because such a problem is very severe from a numerical point of view. Other applications can be imagined since the BFP formalism is quite general.