ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
D. E. Cullen, S. T. Perkins
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 75-91
Technical Paper | doi.org/10.13182/NSE82-A19596
Articles are hosted by Taylor and Francis Online.
Methods for treating nuclear plus interference elastic scattering of light charged particles in continuous energy or multigroup transport calculations are given. These methods conserve the rate of projectile energy loss and maintain energy balance by ensuring that, on the average, the rate of projectile energy loss equals the rate of target energy gain. It is shown that this approach is equivalent to conserving the P0 and P1 moments of the angular distribution of scattered projectiles and targets in the center-of-mass system. We include an approximate method that corrects for the temperature of the medium. To illustrate the application of these methods to a multigroup problem, we give multigroup data for all 25 projectile/target combinations of protons, deuterons, tritons, 3He ions, and alpha particles based on an example 10-group energy structure. The results are in a compact form from which the group-to-group transfer matrices can be easily calculated.