ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
S. Cuperman, B. Levush
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 45-54
Technical Paper | doi.org/10.13182/NSE82-A19593
Articles are hosted by Taylor and Francis Online.
The ion beam-pellet interaction is investigated by using a time-dependent particle tracking algorithm for the slowing down of the bombarding ions. Model equations for energy and momentum deposition are developed and solved with the aid of a numerical code that describes the beam-pellet interaction as well as the subsequent heating and compression of the target. Results of calculations carried out for solid deuterium-tritium pellets using beams of deuterons, alpha particles, and lithium ions are presented and discussed. Two main conclusions are found to hold, namely: 1. Consideration of the finite thermalization time of the ion in the transport process results in slower heating and compression of the pellet as well as in smaller thermonuclear yield ratios. 2. Taking into account the momentum deposition of the bombarding ions in the pellet also provides different thermonuclear yields for low initial ion energies; for high initial ion energies, the effect of the momentum deposition is negligible.