ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Zoltan R. Rosztoczy and Lynn E. Weaver
Nuclear Science and Engineering | Volume 20 | Number 3 | November 1964 | Pages 318-323
Technical Paper | doi.org/10.13182/NSE64-A19576
Articles are hosted by Taylor and Francis Online.
The buildup of xenon poisoning is a prime factor in restarting a high-flux thermal reactor after shutdown. To restart the reactor at any time, sufficient excess reactivity must be present to override the xenon poisoning. The amount of excess reactivity required can be minimized by determining an optimum reactor shutdown program. Based on Pontryagins Maximum Principle, optimum shutdown programs are determined for various flux levels ranging from 1014n/cm2 sec. to 1016n/cm2sec. Results show that a considerable reduction in the peak value of xenon concentration can be realized by relatively simple shutdown programs.