ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Robert C. Axtmann and John T. Sears
Nuclear Science and Engineering | Volume 23 | Number 3 | November 1965 | Pages 299-305
Technical Paper | doi.org/10.13182/NSE65-A19563
Articles are hosted by Taylor and Francis Online.
Energy loss by fission fragments in nitrogen gas was studied by means of a pulse technique that measured luminescence excited by a low-intensity Cf252 spontaneous fission source. A novel kinetic analysis of competing emission and quenching reactions was developed that gives the power law dependency of energy loss by the fragments in a luminescing gas from the pressure at which maximum luminosity is observed. For nitrogen, the relationship E = E0(1−f)1.70 ± 0.07 is valid for 0.4 E0 < E < E0. The term E is used for the kinetic energy of a fission fragment of initial energy E0 that has traveled a fraction f of its total range.