ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
D. C. Leslie, A. Jonsson
Nuclear Science and Engineering | Volume 23 | Number 3 | November 1965 | Pages 272-290
Technical Paper | doi.org/10.13182/NSE23-03-272
Articles are hosted by Taylor and Francis Online.
A method of calculating first-flight collision probabilities in cluster geometry is developed. The method is analytic and approximate and is comparable in speed to codes now available for annular geometry. The proposed scheme is based on a consideration of the properties of the nonescape probability from a nonuniform body in the limits of high and low macroscopic cross sections, together with an interpolation procedure that allows one to determine the probability itself with sufficient accuracy. When calculated for combinations of different rings of fuel pins in a cluster, the resulting set of nonescape probabilities enables one to proceed to a determination of the probability of going from one ring to another. The coolant and the fuel pins are treated separately. Results of the method are compared with exact calculations on two fuel-element types of current interest. In these cases the form factor, defined as the ratio of maximum to mean flux in the cluster, is in error by at most 2%. The hyperfine structure in each ring (i.e. the ratio of the mean flux in the coolant to the mean flux in the fuel) is calculated with comparable accuracy. A one-group calculation on a 37-rod fuel element takes approximately 5 sec on an IBM-7090, so that the method is certainly usable for multigroup applications.