ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Chris L. Castrianni, Marvin L. Adams
Nuclear Science and Engineering | Volume 128 | Number 3 | March 1998 | Pages 278-296
Technical Paper | doi.org/10.13182/NSE98-A1956
Articles are hosted by Taylor and Francis Online.
A strictly positive spatial discretization method for the linear transport equation is presented. This method, which is algebraically nonlinear, enforces particle conservation on subcells and approximates the spatial variation of the source in each subcell as an exponential. The method is described in slab geometry and analyzed in several limits of practical significance; numerical results are presented. An x-y-geometry version of the method is then presented, assuming a spatial grid of arbitrary polygons; numerical results are presented. A rapidly convergent method for accelerating the iterations on the scattering source is also presented and tested. The analyses and results demonstrate that the method is startlingly accurate, especially on shielding-type problems, even given coarse and/or distorted spatial meshes.