ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Chris L. Castrianni, Marvin L. Adams
Nuclear Science and Engineering | Volume 128 | Number 3 | March 1998 | Pages 278-296
Technical Paper | doi.org/10.13182/NSE98-A1956
Articles are hosted by Taylor and Francis Online.
A strictly positive spatial discretization method for the linear transport equation is presented. This method, which is algebraically nonlinear, enforces particle conservation on subcells and approximates the spatial variation of the source in each subcell as an exponential. The method is described in slab geometry and analyzed in several limits of practical significance; numerical results are presented. An x-y-geometry version of the method is then presented, assuming a spatial grid of arbitrary polygons; numerical results are presented. A rapidly convergent method for accelerating the iterations on the scattering source is also presented and tested. The analyses and results demonstrate that the method is startlingly accurate, especially on shielding-type problems, even given coarse and/or distorted spatial meshes.