ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
S. Kaplan
Nuclear Science and Engineering | Volume 23 | Number 3 | November 1965 | Pages 234-237
Technical Paper | doi.org/10.13182/NSE65-A19556
Articles are hosted by Taylor and Francis Online.
A formal parallelism is shown to exist between two classical variational principles governing the time behavior of mechanical systems and two principles relating to the λ-mode eigenvalue problem of neutron group diffusion theory. By identifying the space variable with the time variable and space derivatives (gradients and divergences) with time derivatives, the ‘usual’ variational principle of diffusion theory is shown to be analogous to Hamilton's principle and the diffusion equations are analogous to the Lagrange equations. Hamilton's canonical equations are then analogous to the diffusion equations in first-order form, and the analog of the principle involving the canonical integral is a principle closely related to one proposed recently by Selengut and Wachspress.