ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
T. S. Krolikowski, L. Leibowitz, R. O. Ivins, S. K. Stynes
Nuclear Science and Engineering | Volume 38 | Number 2 | November 1969 | Pages 161-166
Technical Paper | doi.org/10.13182/NSE69-A19521
Articles are hosted by Taylor and Francis Online.
A mathematical model was developed to predict the burning rate and burning temperature of a single spherical sodium particle moving through air or air depleted in oxygen. The model is based on the assumption that the reaction rate is controlled by the diffusion of oxygen to a combustion zone surrounding the particle. A quasi-steady state approach and an averaging technique were used to correlate the reaction rates of individual spray particles with the theoretical burning rate of a spray and the theoretical pressure rise in an enclosing volume. The theory correctly predicted the direction and magnitude of experimentally observed variations in reaction rate with respect to oxygen content, spray velocity, and particle size. The spray particle size was found to be the most important parameter when considering the sprayed sodium-air reaction.