ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John C. Wagner, Alireza Haghighat
Nuclear Science and Engineering | Volume 128 | Number 2 | February 1998 | Pages 186-208
Technical Paper | doi.org/10.13182/NSE98-2
Articles are hosted by Taylor and Francis Online.
Although the Monte Carlo method is considered to be the most accurate method available for solving radiation transport problems, its applicability is limited by its computational expense. Thus, biasing techniques, which require intuition, guesswork, and iterations involving manual adjustments, are employed to make reactor shielding calculations feasible. To overcome this difficulty, we have developed a method for using the SN adjoint function for automated variance reduction of Monte Carlo calculations through source biasing and consistent transport biasing with the weight window technique. We describe the implementation of this method into the standard production Monte Carlo code MCNP and its application to a realistic calculation, namely, the reactor cavity dosimetry calculation. The computational effectiveness of the method, as demonstrated through the increase in calculational efficiency, is demonstrated and quantified. Important issues associated with this method and its efficient use are addressed and analyzed. Additional benefits in terms of the reduction in time and effort required of the user are difficult to quantify but are possibly as important as the computational efficiency. In general, the automated variance reduction method presented is capable of increases in computational performance on the order of thousands, while at the same time significantly reducing the current requirements for user experience, time, and effort. Therefore, this method can substantially increase the applicability and reliability of Monte Carlo for large, real-world shielding applications.