ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
L. W. Weston, R. Gwin, G. de Saussure, R. W. Ingle, J. H. Todd, C, W. Craven, R. W. Hockenbury, R. C. Block
Nuclear Science and Engineering | Volume 42 | Number 2 | November 1970 | Pages 143-149
Technical Paper | doi.org/10.13182/NSE70-A19495
Articles are hosted by Taylor and Francis Online.
The relative neutron capture and fission cross section in the neutron energy range 0.02 to 1.0 eV have been simultaneously measured. The data are normalized by means of the previously reported total cross section. The technique used consisted of passing a pulsed neutron beam through a 233U fission chamber placed at the center of a large liquid scintillator. The prompt-neutron capture gamma rays were detected only in the liquid scintillator whereas a fission event was characterized by coincident signals from the liquid scintillator and fission chamber. This technique provides a new method of obtaining eta in this neutron energy range which is not subject to the same type of errors as are associated with a direct measurement. Comparisons with previously published data are given.