ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. G. Doran
Nuclear Science and Engineering | Volume 52 | Number 3 | November 1973 | Pages 398-402
Technical Note | doi.org/10.13182/NSE73-A19486
Articles are hosted by Taylor and Francis Online.
The effects of some recent developments on displacement cross sections published by the author for iron, chromium, nickel, 18/10 stainless steel, and tantalum are discussed. It is argued that, except for tantalum, the cross sections are essentially consistent with ENDF/B-III, and, furthermore, can be made consistent with an International Atomic Energy Agency recommended secondary displacement model by multiplying by 0.66. A re determination of the tantalum displacement cross section has been made using ENDF/B-III data and an effective displacement energy of 90 eV deduced from a recent measurement of the displacement threshold surface for tantalum. Estimates are made of the contributions to displacement cross sections of several previously ignored nonelastic processes. Finally, the usefulness of the isotropic elastic-scattering approximation at high neutron energies is discussed.