ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
V. V. Verbinski, J. C. Young, J. M. Neill
Nuclear Science and Engineering | Volume 52 | Number 3 | November 1973 | Pages 330-342
Technical Paper | doi.org/10.13182/NSE73-A19480
Articles are hosted by Taylor and Francis Online.
Cylindrical proportional counters were used to measure the scalar neutron flux in the core and reflector of the 235U-fueled fast subcritical reactors, STSF-7 and -9. These data have been compared with time-of-flight angular spectrum measurements in the same reactors, and with transport theory calculations of these assemblies utilizing ENDF/B-III cross sections. The agreement of the two measurement techniques at high energy indicates that the emission time correction procedures used for the time-of-flight studies on subcritical (keff = ≈0.92) assemblies with a 220-m flight path are reliable. At intermediate energies, the two types of measurements and the calculations were in good agreement for the STSF-9 oxide-fueled core, but significantly different for the metal-fueled STSF-7 core in the region of fine structure associated with the pronounced aluminum resonances below 300 keV. The time-of-flight data exhibited some energy mismatch here, and the 4π counter was subjected to more aluminum “shielding” than allowed for in the calculations. The shielding effect was strongest in the metal-fueled STSF-7 core, because of the absence of the oxygen moderator. At low energy, where the Doppler effects of the thermal coefficient of reactivity are concentrated, the calculations underpredict the flux. The time-of-flight data, which are the most reliable here, show the greatest disagreement with theory.