ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
G. J. Kirouac, H. M. Eiland, C. A. Conrad, R. E. Slovacek, K. W. Seemann
Nuclear Science and Engineering | Volume 52 | Number 3 | November 1973 | Pages 310-320
Technical Paper | doi.org/10.13182/NSE73-A19478
Articles are hosted by Taylor and Francis Online.
Resonance parameters for 147Pm and 148mPm have been determined and the resonances 147Pm have been analyzed up to 317 eV. Only one resonance was observed for 148mPm; its location at 0.17 eV is important for thermal reactor calculations Transmission measurements were initially made on four samples of 147Pm2O3 containing 1.6% of the decay product 147Sm. Later measurements, made on a mixed sample of (148mPm + 147Pm)2O3 and on 147Sm, provided resonance parameters for 147Pm and an opportunity for a complete reevaluation of the previous 147Pm results. Corrections for the samarium content could also be made. Both shape and area analyses were performed. The measured total cross section for 147Pm at 0.025 eV was 198 ± 8 b and a capture resonance integral of 2280 ± 200 b was calculated. Using the parameters of the 148mPm resonance at 0.17 eV, a corresponding total thermal-neutron cross section of 10 600 b was ob-tained. Integral measurements with cadmium-covered samples gave a value of (3.6 ± 2.4) × 103 b for the resonance integral of 148mPm, thereby setting an upper limit of 6000 b.