ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Dong H. Nguyen
Nuclear Science and Engineering | Volume 52 | Number 3 | November 1973 | Pages 292-298
Technical Paper | doi.org/10.13182/NSE73-A19476
Articles are hosted by Taylor and Francis Online.
Nonlinear analysis has shown that when the buckling of a nuclear reactor with negative feedback is increased, the flux, under appropriate conditions, will proceed to a new asymptotically stable state. This contrasts with the linear theory which predicts a runaway. In this work, the method of “coordinate stretching” has been used to obtain the asymptotic solution of a nonlinear nuclear reactor under the combined effect of an initial positive disturbance and a negative feedback based on the Newton’s law of cooling. The minimum stability condition is derived by requiring that a bounded new equilibrium state exist. This condition sets an upper limit to the magnitude of the initial disturbance beyond which an equilibrium solution does not exist. Furthermore, the magnitude of the equilibrium flux is determined explicitly in terms of several relevant physical properties of the system: feedback coefficient, energy production rate, and rate of energy transfer to coolant.