ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
A. N. Verma, Balesh Verma, Feroz Ahmed, L. S. Kothari
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 160-174
Technical Paper | doi.org/10.13182/NSE79-A19461
Articles are hosted by Taylor and Francis Online.
To study the anisotropy in scattering of thermal neutrons in beryllium, we have calculated elastic as well as inelastic differential cross sections. Anisotropy in elastic scattering is studied by replacing the δ function by a Gaussian function of suitable width. To study the anisotropy in inelastic scattering, we have calculated one-phonon coherent inelastic differential cross sections. The differential cross sections for the one- and two-phonon processes have also been calculated in the incoherent approximation. We have also expanded the angle dependence of cross section in terms of the Legendre polynomials. Using the above differential cross sections, the intensity of scattered neutrons in various angular directions has been calculated, and the results have been compared with the corresponding observed results of Aizawa et al. Calculated results are found in good agreement with the corresponding observed results. We have investigated the effect of anisotropy in scattering on steady-state angular spectra inside small beryllium assemblies. The calculated results have been compared with the observed results of Lake and Kallfelz and also with those obtained in the isotropic scattering approximation of Garg et al. It is found that the calculated spectra in the first angular direction (θ1 ≃ 28 deg) at various distances from the source plane are in better agreement with the corresponding observed results in the entire energy range than those obtained in the isotropic scattering approximation.