ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NuScale Energy Exploration Center opens at SC State
NuScale Power Corporation’s latest Energy Exploration (E2) Center has opened at South Carolina State University, in Orangeburg. E2 Centers are designed to provide visitors with hands-on experiences in simulated scenarios of operations at nuclear power plants. NuScale has established 10 such centers around the world. The company officially presented the fully installed E2 Center to SC State on May 21, after a collaborative setup and training process was completed.
K. O. Ott, N. A. Hanan, P. J. Maudlin, R. C. Borg
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 152-159
Technical Paper | doi.org/10.13182/NSE79-A19460
Articles are hosted by Taylor and Francis Online.
The time-dependent breeding of fuel in a growing system of breeder reactors can be characterized by the transitory (instantaneous) growth rate, γ(t), which expresses both fuel and reactor properties. The three most important aspects of γ(t) can be expressed by time-independent integral concepts. Two of these concepts are in widespread use, although they are not generally calculated from the same definitions. A third integral concept that links the two earlier ones is introduced here. The time-dependent growth rate has an asymptotic value, γ∞, the equilibrium growth rate, which is the basis for the calculation of the doubling time. The equilibrium growth rate measures the breeding capability and represents a reactor property. Maximum deviation of γ(t) and γ∞ generally appears at the initial startup of the reactor, where γ(t = 0) = γ0. This deviation is due to the difference between the initial and asymptotic fuel inventory composition. The initial growth rate can be considered a second integral concept; it characterizes the breeding of a particular fuel in a given reactor. Growth rates are logarithmic derivatives of the growing mass of fuel in breeder reactors, especially γ∞, which describes the asymptotic growth by exp(γ∞t). There is, however, a variation in the fuel-mass factor in front of this exponential function during the transition from γ0 to γ∞. It is shown here that this variation of the fuel mass during transition can be described by a third integral concept, termed the breeding bonus, b. The breeding bonus measures the quality of a fuel for its use in a given reactor in terms of its impact on the magnitude of the asymptotically growing fuel mass. It is therefore an integral concept that comprises both fuel and reactor properties. Integral breeding concepts are generally calculated by application of a set of weight factors to the respective isotopic reaction rate and inventory components. So, the calculation of γ0 and γ∞ is facilitated by use of the critical mass (CM) worths () and the breeding worth factors (), respectively. It is shown here that the calculation of the breeding bonus, as a quantity that links initial and asymptotic fuel growth, is based on the joint application of and .