ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
S. V. G. Menon, D. C. Sahni
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 181-197
Technical Paper | doi.org/10.13182/NSE80-A19450
Articles are hosted by Taylor and Francis Online.
In this paper we treat the problem of resonance absorption in isolated Breit-Wigner resonances of an absorber in an infinite homogeneous mixture of the absorber and moderator with an explicit treatment of the moderator collision integral. It is shown that Fourier transform techniques can profitably be used to treat this problem. However, the treatment calls for certain ideas from the theory of distributions similar to those used by Case in singular eigenfunction theory. The formulation leads to Fredholm integral equations in the transform variable whose solution gives the integral parameter of interest, namely, the effective resonance integral directly. In the limit of zero temperature, we obtain a second-order differential equation in the transform variable and formulate an accurate and fast converging iterative scheme to extract the resonance integral from its solution. Explicit formulas are derived for the resonance integral including the effect of resonance potential interference scattering. The analysis also provides an analytical expression for the asymptotic flux distribution well below the resonance energy. Numerical results are presented to demonstrate the accuracy of the method.