ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
S. V. G. Menon, D. C. Sahni
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 181-197
Technical Paper | doi.org/10.13182/NSE80-A19450
Articles are hosted by Taylor and Francis Online.
In this paper we treat the problem of resonance absorption in isolated Breit-Wigner resonances of an absorber in an infinite homogeneous mixture of the absorber and moderator with an explicit treatment of the moderator collision integral. It is shown that Fourier transform techniques can profitably be used to treat this problem. However, the treatment calls for certain ideas from the theory of distributions similar to those used by Case in singular eigenfunction theory. The formulation leads to Fredholm integral equations in the transform variable whose solution gives the integral parameter of interest, namely, the effective resonance integral directly. In the limit of zero temperature, we obtain a second-order differential equation in the transform variable and formulate an accurate and fast converging iterative scheme to extract the resonance integral from its solution. Explicit formulas are derived for the resonance integral including the effect of resonance potential interference scattering. The analysis also provides an analytical expression for the asymptotic flux distribution well below the resonance energy. Numerical results are presented to demonstrate the accuracy of the method.