ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Kenny C. Gross, Robert V. Strain
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 163-174
Technical Paper | doi.org/10.13182/NSE80-A19448
Articles are hosted by Taylor and Francis Online.
Experimental and analytical techniques have been developed for delayed neutron (DN) signal analysis and characterization that can provide diagnostic information to augment data from cover-gas analyses in the detection and identification of breached elements in a liquid-metal fast breeder reactor. Eleven flow reduction tests have been run in Experimental Breeder Reactor II to provide base data support for predicting DN signal characteristics during exposed fuel operation. Results from the tests demonstrate the feasibility and practicability of response-analysis techniques for determining (a) the transit time, Ttr, for DN emitters traveling from the core to the detector, and (b) the isotopic holdup time, Th, of DN precursors in the fuel element. The value Ttr varies with the relative grid location of the DN source, and Th is affected by the form of fuel exposed to the coolant as well as the condition of the breach site. These parameters are incorporated into a mathematical formulism that enables one to compute for any exposed-fuel test an “equivalent recoil area.” This concept provides a basis for comparison of different run-beyond-cladding-breach tests in fast reactors.