ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kenny C. Gross, Robert V. Strain
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 163-174
Technical Paper | doi.org/10.13182/NSE80-A19448
Articles are hosted by Taylor and Francis Online.
Experimental and analytical techniques have been developed for delayed neutron (DN) signal analysis and characterization that can provide diagnostic information to augment data from cover-gas analyses in the detection and identification of breached elements in a liquid-metal fast breeder reactor. Eleven flow reduction tests have been run in Experimental Breeder Reactor II to provide base data support for predicting DN signal characteristics during exposed fuel operation. Results from the tests demonstrate the feasibility and practicability of response-analysis techniques for determining (a) the transit time, Ttr, for DN emitters traveling from the core to the detector, and (b) the isotopic holdup time, Th, of DN precursors in the fuel element. The value Ttr varies with the relative grid location of the DN source, and Th is affected by the form of fuel exposed to the coolant as well as the condition of the breach site. These parameters are incorporated into a mathematical formulism that enables one to compute for any exposed-fuel test an “equivalent recoil area.” This concept provides a basis for comparison of different run-beyond-cladding-breach tests in fast reactors.