ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
H. Mösinger
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 89-102
Technical Paper | doi.org/10.13182/NSE80-A19443
Articles are hosted by Taylor and Francis Online.
A model for two-phase (water-vapor) flow in two-dimensional Cartesian or cylindrical coordinates is described that is implemented in the code DRIX-2D. The model includes slip between the phases and accounts for thermodynamic nonequilibrium. The code was designed as a “best-estimate” model for simulation of loss-of-coolant accidents (LOCAs) in light water reactor safety analysis. In this paper results of DRIX-2D applications are reported that can be used to assess the validity of simplified LOCA models. The main results are that both Cartesian and axisymmetric coordinates in two dimensions show considerable disadvantages as far as the pressure history in the downcomer is concerned. Yet, both models yield acceptable results concerning the gross blowdown behavior. Due to a 90-deg change in flow direction, considerable radial profiles in mass flow rate, velocity, and void fraction establish in the blowdown pipe. Nevertheless, a minor difference in the averaged mass flow rate exists only between a one- and two-dimensionally modeled blowdown pipe. A nonequilibrium state establishes at the pipe inlet in the case of subcooled vessel conditions and is maintained up to the orifice at least for pipe lengths <5m. However, the increase in mass flow rate caused by this nonequilibrium state is generally small enough for typical reactor conditions, so that an equilibrium assumption in the blowdown pipe should be appropriate for LOCA calculations.