ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. Tsabaris, E. Wattecamps, G. Rollin, C. Papadopoulos
Nuclear Science and Engineering | Volume 128 | Number 1 | January 1998 | Pages 47-60
Technical Paper | doi.org/10.13182/NSE128-47
Articles are hosted by Taylor and Francis Online.
Double-differential (n,xp) and (n,x) cross-section ratio measurements are performed at the 7-MV Van de Graaff accelerator laboratory for neutron energies between 2.0 and 15.6 MeV. The following reaction rate ratios are measured: 58Ni(n,x) to 27Al(n,), 58Ni(n,x) to 58Ni(n,p), 63Cu(n,xp) to 27Al(n,), and 63Cu(n,xp) to 58Ni(n,p). Protons or alphas are detected by E-E-E telescopes under 14, 51, 79, 109, and 141 deg. The energy spectrum of the emitted particles and the angular yield distribution are measured. First, the measurements provide double-differential cross-section data for 27Al(n,) and 58Ni(n,p) by normalization to the known total yield reference cross-section values. Subsequently, the reaction rate ratios of 58Ni(n,x) and 63Cu(n,xp) to 27Al(n,) or 58Ni(n,p) provide double-differential cross sections of 58Ni(n,x) and 63Cu(n,xp) in b/(MeVsr). The measured double-differential cross-section data, the particle energy spectra, the angular distributions, and the total yield cross-section data are compared with measured data from literature and with nuclear reaction model calculations performed at the Institute for Reference Materials and Measurements with the computer codes STAPRE-H and EXIFON.