ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NextEra and Google ink a deal to restart Duane Arnold
A day anticipated by many across the nuclear community has finally arrived: NextEra Energy has officially announced its plans to restart Iowa’s only nuclear power plant, the Duane Arnold Energy Center.
C. Tsabaris, E. Wattecamps, G. Rollin, C. Papadopoulos
Nuclear Science and Engineering | Volume 128 | Number 1 | January 1998 | Pages 47-60
Technical Paper | doi.org/10.13182/NSE128-47
Articles are hosted by Taylor and Francis Online.
Double-differential (n,xp) and (n,x) cross-section ratio measurements are performed at the 7-MV Van de Graaff accelerator laboratory for neutron energies between 2.0 and 15.6 MeV. The following reaction rate ratios are measured: 58Ni(n,x) to 27Al(n,), 58Ni(n,x) to 58Ni(n,p), 63Cu(n,xp) to 27Al(n,), and 63Cu(n,xp) to 58Ni(n,p). Protons or alphas are detected by E-E-E telescopes under 14, 51, 79, 109, and 141 deg. The energy spectrum of the emitted particles and the angular yield distribution are measured. First, the measurements provide double-differential cross-section data for 27Al(n,) and 58Ni(n,p) by normalization to the known total yield reference cross-section values. Subsequently, the reaction rate ratios of 58Ni(n,x) and 63Cu(n,xp) to 27Al(n,) or 58Ni(n,p) provide double-differential cross sections of 58Ni(n,x) and 63Cu(n,xp) in b/(MeVsr). The measured double-differential cross-section data, the particle energy spectra, the angular distributions, and the total yield cross-section data are compared with measured data from literature and with nuclear reaction model calculations performed at the Institute for Reference Materials and Measurements with the computer codes STAPRE-H and EXIFON.