ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Dan G. Cacuci
Nuclear Science and Engineering | Volume 128 | Number 1 | January 1998 | Pages 1-16
Technical Paper | doi.org/10.13182/NSE98-A1941
Articles are hosted by Taylor and Francis Online.
A novel analysis of the neutron multigroup diffusion equation is presented for two-dimensional piecewise homogeneous domains with interior corners that arise at the intersections between regions with distinct material properties. Using polar coordinates centered at a typical interior corner, the solution of the multigroup flux is obtained as an infinite series of products of pairs of functions such that, for every pair, one of the functions depends solely on the angular variable and a single energy group while the other function depends on the radial variable and on all energy groups. The angular functions are shown to be the eigenfunctions of a Sturm-Liouville system that admits an infinite set of discrete and, in general, noninteger eigenvalues. On the other hand, the radial functions are the solutions of an infinite system of second-order ordinary linear differential equations. Exact explicit solutions for the multigroup diffusion equation (MGDE) for two-dimensional disk-like homogeneous domains are also derived and shown to yield analytic expressions for the group fluxes. This analyticity is shown to stem from the fact that the relevant eigenvalues are positive integers, independent of material properties and/or group structure. The exact expressions for the angular eigenvalues and corresponding eigenfunctions for two-region domains are then derived and shown to depend crucially on the specific angle between the two regions. This fact is underscored by deriving the exact expressions for the complete sets of eigenvalues and eigenfunctions for two geometries of particular importance to nuclear reactors, namely the hexagonal and rectangular geometries, respectively, and by showing that they are fundamentally distinct from one another. Of course, these expressions reduce to one and the same form for both geometries when the respective two-region domains are reduced to a single-region domain. Finally, the multigroup fluxes are shown to be bounded but nonanalytic at the respective interior corners; the reason underlying this behavior is traced back to the noninteger character of the relevant eigenvalues. This nonanalyticity is shown to be the fundamental reason for the failure of conventional (e.g., finite difference, finite element) numerical methods for solving the MGDE at and around such corners.