ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Yoshiaki Oka, Shigehiro An, Hiroyuki Hashikura, Shun-ichi Miyasaka, Kinji Koyama
Nuclear Science and Engineering | Volume 79 | Number 3 | November 1981 | Pages 308-315
Technical Note | doi.org/10.13182/NSE81-A19407
Articles are hosted by Taylor and Francis Online.
Neutron reaction rates were measured by activation foils and thermoluminescent detectors through 180-cm-thick sodium shields and also through the layers of a 6-cm-thick iron plate and the sodium shields. A tightly coupled source shield configuration was constructed with the fast neutron reactor YAYOI as a source. Analysis of the experiments was made by using the DOT 3.5 code with 13-group neutron cross sections from the ENDF/B-IV library. Bondarenko-type self-shielding factors were included. The source condition for the analysis was determined by an iteration method from the experimental result at the reactor-shield interface and the initial estimate that was obtained from the core criticality calculation. The calculated neutron distributions in the shields agree with the experiments within ∼25% for the penetration through 180-cm-thick sodium. The shapes of the spatial distributions of the reaction rates in the shields show rather good agreement with the experiment.