ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yoshiaki Oka, Shigehiro An, Hiroyuki Hashikura, Shun-ichi Miyasaka, Kinji Koyama
Nuclear Science and Engineering | Volume 79 | Number 3 | November 1981 | Pages 308-315
Technical Note | doi.org/10.13182/NSE81-A19407
Articles are hosted by Taylor and Francis Online.
Neutron reaction rates were measured by activation foils and thermoluminescent detectors through 180-cm-thick sodium shields and also through the layers of a 6-cm-thick iron plate and the sodium shields. A tightly coupled source shield configuration was constructed with the fast neutron reactor YAYOI as a source. Analysis of the experiments was made by using the DOT 3.5 code with 13-group neutron cross sections from the ENDF/B-IV library. Bondarenko-type self-shielding factors were included. The source condition for the analysis was determined by an iteration method from the experimental result at the reactor-shield interface and the initial estimate that was obtained from the core criticality calculation. The calculated neutron distributions in the shields agree with the experiments within ∼25% for the penetration through 180-cm-thick sodium. The shapes of the spatial distributions of the reaction rates in the shields show rather good agreement with the experiment.