ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Iván Lux
Nuclear Science and Engineering | Volume 82 | Number 3 | December 1982 | Pages 332-337
Technical Paper | doi.org/10.13182/NSE82-A19394
Articles are hosted by Taylor and Francis Online.
The discrete angle technique is a customary method for selecting scattering angles from such scattering laws that are given through their Legendre coefficients up to some finite order. In this technique, discrete scattering angles are selected with certain probabilities. In low-order Pn truncations, however, this method can lead to unwanted ray effects during the first few free flights of the random walk. We propose a method in which a linear combination of some arbitrary density function, having the same first 2n moments as the truncated expansion, and of a discrete density function will yield samples that conserve the first (2n + 2) moments of the truncated series. Bounds are derived on the possible ranges of the combination coefficient. The method is applied to construct a semicontinuous density function (continuous + Dirac delta functions) having the first four moments prescribed, i.e., being given by its first three Legendre coefficients.