ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Han Gon Kim, John C. Lee
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 300-316
Technical Paper | doi.org/10.13182/NSE97-A1937
Articles are hosted by Taylor and Francis Online.
A new critical heat flux (CHF) correlation has been developed by using the alternating conditional expectation (ACE) algorithm, which yields an optimal relationship between a dependent variable and multiple independent variables. In general, CHF correlation development requires tedious and time-consuming effort because it involves multivariate nonlinear regression analysis. For this reason, existing CHF correlations are usually applicable to specific, and often narrow, ranges of physical parameters. The ACE algorithm is applied to a collection of 12879 CHF data points for forced convective boiling in vertical tubes, and a generalized correlation covering a broad range of flow parameters is obtained. The mean, root mean square, and maximum errors of our new correlation are -0.558, 12.5, and 122.6%, respectively. Our CHF correlation represents the entire set of CHF data with an overall accuracy equivalent to or better than that of three existing correlations. Our results are particularly superior in the high-pressure region covering the rated conditions of pressurized water reactors, as well as in the low-pressure region.