ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Han Gon Kim, John C. Lee
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 300-316
Technical Paper | doi.org/10.13182/NSE97-A1937
Articles are hosted by Taylor and Francis Online.
A new critical heat flux (CHF) correlation has been developed by using the alternating conditional expectation (ACE) algorithm, which yields an optimal relationship between a dependent variable and multiple independent variables. In general, CHF correlation development requires tedious and time-consuming effort because it involves multivariate nonlinear regression analysis. For this reason, existing CHF correlations are usually applicable to specific, and often narrow, ranges of physical parameters. The ACE algorithm is applied to a collection of 12879 CHF data points for forced convective boiling in vertical tubes, and a generalized correlation covering a broad range of flow parameters is obtained. The mean, root mean square, and maximum errors of our new correlation are -0.558, 12.5, and 122.6%, respectively. Our CHF correlation represents the entire set of CHF data with an overall accuracy equivalent to or better than that of three existing correlations. Our results are particularly superior in the high-pressure region covering the rated conditions of pressurized water reactors, as well as in the low-pressure region.