ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Reimar Froehlich
Nuclear Science and Engineering | Volume 34 | Number 1 | October 1968 | Pages 57-66
Technical Paper | doi.org/10.13182/NSE68-A19366
Articles are hosted by Taylor and Francis Online.
The existence of a unique positive critical flux distribution and of a corresponding single positive eigenvalue (k-effective), which is greater than the absolute value of any other eigenvalue, is established for the discrete form of the steady-state multigroup diffusion equations. The assumptions here are considerably less restrictive than in formerly published papers. For example, arbitrary scattering matrices, general fission transfer matrices (not necessarily in multiplicative form), and internal nondiffusion regions are allowed. Furthermore, the transitivity assumption of the problem is replaced by weak conditions of connectedness, which are not only sufficient but also necessary for the existence statements. The theoretical and computational significance of the existence and positivity theorems are discussed. Several examples illustrate the generality of the results and the importance of the conditions of connectedness.