ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
L. A. Hageman, J. B. Yasinsky
Nuclear Science and Engineering | Volume 38 | Number 1 | October 1969 | Pages 8-32
Technical Paper | doi.org/10.13182/NSE38-8
Articles are hosted by Taylor and Francis Online.
Alternating-direction implicit (ADI) time-differencing approximations are developed for the two-dimensional neutron group-diffusion equations. These methods are analyzed for accuracy and stability relative to the implicit-difference approach used in the TWIGL program. It is shown that for model problems (bare homogenous reactors with constant material properties) the ADI method is as accurate as the TWIGL method and much faster computationally. However, several numerical comparisons show that the ADI approach is asymptotically unstable for non-model problems unless extremely small time-steps are used. Such comparisons show the ADI methods (considered in this paper) to be inferior to the TWIGL method for realistic reactor-dynamic problems. A variant on the ADI scheme (ADI-B2) is developed and for a class of delayed supercritical problems shown to be potentially superior to all methods considered.