ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. M. Suárez, M. A. Arribére, S. Ribeiro Guevara, A. J. Kestelman
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 245-261
Technical Paper | doi.org/10.13182/NSE97-A1934
Articles are hosted by Taylor and Francis Online.
The reaction cross sections averaged over a 235U fission neutron spectrum have been measured for the 45Sc(n,)42K, 45Sc(n,2n)44Scg, and 45Sc(n,2n)44Scm threshold reactions. The values found for these cross sections are, respectively: 308 ± 16 b, 27.3 ± 1.3 b, and 22.0 ± 2.7 b, using 111 ± 3 mb as the averaged cross section for the 58Ni(n,p)58Com+g reaction that was used as a standard. To the authors' knowledge, these are the first experimental determinations of the 45Sc(n,2n)44Scg and 45Sc(n,2n)44Scm spectrum-averaged cross sections, which were measured using a new method for the case when both the ground and an isomeric state are generated.By fitting with a suitable function the experimental differential cross sections found in the EXFOR data file for each of these reactions, the corresponding spectrum-averaged cross sections have been calculated for nine different analytical representations of the 235U fission neutron spectrum. This calculation was also performed for the representation based on the Madland-Nix model of prompt fission neutrons. The agreement between calculated and measured values is in general excellent for the 45Sc(n,)42K low-threshold reaction. However, the agreement is rather poor for the 45Sc(n,2n) high-threshold reactions, except for two, Maxwellian-type, representations tried. Since it is well known that Watt-type representations, rather than the Maxwellian type, produce an overall better description of the 235U fission spectrum, the recommended analytical representations to be used are the Watt type. Taking into account their poor performance for high-threshold reactions and recognizing the practical importance of having an analytical representation that agrees with experimental data in the whole energy range, two new representations are presented, based on the one recommended for the ENDF/B-V file, for the 235U fission neutron spectrum, whose main merit is better agreement with experimental results.