ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
Jacob B. Romero
Nuclear Science and Engineering | Volume 42 | Number 1 | October 1970 | Pages 49-57
Technical Paper | doi.org/10.13182/NSE70-A19326
Articles are hosted by Taylor and Francis Online.
Radioactive particles escaping a surface carry a portion of the disintegration energy. The fluxes of particles, power, and energy are referred to as residual fluxes. In this paper a method is formulated for predicting residual fluxes emanating from a composite surface consisting of an active substrate layer protected by a clad layer. Application of this method requires only knowledge of the particle ranges in the layer materials. Using existing range-energy equations, generalized plots are presented for estimating residual quantities for heavy particles. Calculations show that fractional residual power and particle fluxes vary from 0.5 for thin (monoatomic) layers to zero for very thick layer or heavily cladded systems. Typical values of the residual power are 0.1 W/cm2 for alpha particles and 10 W/cm2 for fissioning surfaces.