ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
Jacob B. Romero
Nuclear Science and Engineering | Volume 42 | Number 1 | October 1970 | Pages 49-57
Technical Paper | doi.org/10.13182/NSE70-A19326
Articles are hosted by Taylor and Francis Online.
Radioactive particles escaping a surface carry a portion of the disintegration energy. The fluxes of particles, power, and energy are referred to as residual fluxes. In this paper a method is formulated for predicting residual fluxes emanating from a composite surface consisting of an active substrate layer protected by a clad layer. Application of this method requires only knowledge of the particle ranges in the layer materials. Using existing range-energy equations, generalized plots are presented for estimating residual quantities for heavy particles. Calculations show that fractional residual power and particle fluxes vary from 0.5 for thin (monoatomic) layers to zero for very thick layer or heavily cladded systems. Typical values of the residual power are 0.1 W/cm2 for alpha particles and 10 W/cm2 for fissioning surfaces.