ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bart J. Daly
Nuclear Science and Engineering | Volume 72 | Number 1 | October 1979 | Pages 97-107
Technical Paper | doi.org/10.13182/NSE79-A19312
Articles are hosted by Taylor and Francis Online.
A series of numerical calculations was performed to study the effect of apparatus scale size on the magnitude and duration of emergency core coolant (ECC) bypass and the time delay for refill of the lower plenum of a pressurized water reactor during a hypothetical loss-of-coolant accident. These results indicate that for certain idealized flow and thermal conditions, flow similarity can be obtained at all scale sizes, but that for more realistic conditions, the effects of apparatus scale size and lower plenum pressure on ECC bypass and lower plenum refill can be large. In particular, the duration of ECC bypass and the time delay for refill appear to be more sensitive to momentum exchange at full scale and high lower plenum pressure than they are at 2/15 scale and low pressure. The sensitivity to mass exchange, ECC subcooling, and wall heat transfer decreases with increasing scale and lower plenum pressure. The effect of introducing steam, rather than air, into the downcomer through the broken ECC injection port when the pressure in the downcomer falls below that in the containment vessel is to decrease the rate of lower plenum refill.