ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Donald L. Smith, James W. Meadows
Nuclear Science and Engineering | Volume 76 | Number 1 | October 1980 | Pages 61-66
Technical Note | doi.org/10.13182/NSE80-A19295
Articles are hosted by Taylor and Francis Online.
Cross sections for the 66Zn(n,p)66Cu reaction have been measured in the 4.2- to 10-MeV energy range using conventional activation techniques. This work provides results for an energy region where no other data are available. These results, and values from the literature for energies above 13 MeV, are used to provide an estimation of the cross-section excitation function from ∼4.2 to 20 MeV. An extrapolation of the cross section from 4.2 MeV to the effective threshold at ∼3 MeV is derived from calculations based on a semiempirical model that is fitted to the experimental data at higher energies. This excitation function is used to compute fission-spectrum-average cross sections, which are compared with corresponding values from the literature.