ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Harvey J. Amster, Wilson K. Talley
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 53-59
Technical Paper | doi.org/10.13182/NSE64-A19274
Articles are hosted by Taylor and Francis Online.
When describing neutrons interacting with homogeneous media, Monte Carlo can generate a sequence of energies and flight directions without locating the positions of the collisions that produced them. If the spatial distribution of one of these collisions is then described analytically, unbiased direct samples of the neutron density can conveniently be obtained at specified positions and energies and at discretely sampled angles. Previous applications for plane sources in infinite media with real cross sections are here generalized for plane sources in slabs and point sources within infinite half spaces. A modified treatment for heterogeneous media is also formulated. These extensions to other geometries can provide not only additional calculational standards, but also theoretical results that could disagree with experimental facts only because of the assumed nuclear data.