ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
E. Creutz
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 28-44
Technical Paper | doi.org/10.13182/NSE64-A19272
Articles are hosted by Taylor and Francis Online.
The flow rates of gases at room temperature through various porous materials have been measured for large ranges of average pressure and pressure difference across the samples such that PΔP for a given sample varies by factors as large as 106. These rates are proportional to (PΔP)γ where γ decreases from 1 to 0.5 as the flow increases and 7 for a given medium is a function of an effective Reynolds number only, independent of the gas used. All the data, including those for transition flow, may be expressed by the following equation: where F is an average flow rate of gas passing through the medium measured in units of cm3/sec at 1 atm pressure, the coefficients c1 and c2 depend only on the properties of the porous medium and can be determined from experiments at low rates of laminar flow and high rates of fully turbulent flow, respectively, the coefficient α is given by ln 2, where ρ1 is the gas density at 1 atm pressure and room temperature, and η is the viscosity. Making the transformation and changing to the exponential base 2, the general equation becomes This dimensionless equation egresses experimental data for a variety of gases and porous media as examined in this study over a range of about 1011 for the variable x and about 2 × 109 for the variable y. It also egresses some data of others on flow through various porous metals and through beds of granular solids. Mean hydraulic radii of pores, effective numbers of pores, friction factors, and surface-roughness factors for the samples investigated are given.