ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
W. J. O'Donnell, B. F. Langer
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE64-A19269
Articles are hosted by Taylor and Francis Online.
General methods have recently been developed for low-cycle fatigue design. The required basic strain-controlled data for both unirradiated and irradiated Zircaloy–2, −3, and −4 were obtained for temperatures between 70 F and 600 F. Data include both rolled and base-annealed material, and as-welded material tested in various directions. The “cyclic” stress-strain properties of these materials were also obtained and were found to differ quite significantly from the conventional properties. Using the cyclic properties in a Modified Goodman Diagram, fatigue-failure curves were developed which included the deleterious effect of the maximum possible mean stress that can exist in the material as it is cycled. Limited available test data confirm the validity of this method. Using the resulting curves, one need only consider the cyclic stress loads. The worst possible effects of residual stresses due to welding and other fabrication methods, and mean stresses due to differential thermal expansion are included in the curves. The phenomenon of fuel growth introduces a monotonically increasing strain which accompanies the cyclic strain. The effects of such a gradually accumulating increment of strain were investigated and were found to be adequately covered by the adjustment for maximum mean stress. Design curves were constructed from the mean failure curves by applying approximate factors to cover the effects of size, environment, surface finish and scatter of data. The results of fatigue tests on notched irradiated Zircaloy indicate that this material is somewhat less notch sensitive than 100 000-lb/in.2 tensile strength steel. Unirradiated Zircaloy is even less notch sensitive. However, fatigue tests on notched weld metal indicate considerably greater notch sensitivity.