ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
W. J. O'Donnell, B. F. Langer
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE64-A19269
Articles are hosted by Taylor and Francis Online.
General methods have recently been developed for low-cycle fatigue design. The required basic strain-controlled data for both unirradiated and irradiated Zircaloy–2, −3, and −4 were obtained for temperatures between 70 F and 600 F. Data include both rolled and base-annealed material, and as-welded material tested in various directions. The “cyclic” stress-strain properties of these materials were also obtained and were found to differ quite significantly from the conventional properties. Using the cyclic properties in a Modified Goodman Diagram, fatigue-failure curves were developed which included the deleterious effect of the maximum possible mean stress that can exist in the material as it is cycled. Limited available test data confirm the validity of this method. Using the resulting curves, one need only consider the cyclic stress loads. The worst possible effects of residual stresses due to welding and other fabrication methods, and mean stresses due to differential thermal expansion are included in the curves. The phenomenon of fuel growth introduces a monotonically increasing strain which accompanies the cyclic strain. The effects of such a gradually accumulating increment of strain were investigated and were found to be adequately covered by the adjustment for maximum mean stress. Design curves were constructed from the mean failure curves by applying approximate factors to cover the effects of size, environment, surface finish and scatter of data. The results of fatigue tests on notched irradiated Zircaloy indicate that this material is somewhat less notch sensitive than 100 000-lb/in.2 tensile strength steel. Unirradiated Zircaloy is even less notch sensitive. However, fatigue tests on notched weld metal indicate considerably greater notch sensitivity.