ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. K. Davis, J. A. De Juren, M. Reier
Nuclear Science and Engineering | Volume 23 | Number 1 | September 1965 | Pages 74-81
Technical Paper | doi.org/10.13182/NSE65-A19260
Articles are hosted by Taylor and Francis Online.
Measurements of the shape of the fundamental mode of a thermalized neutron pulse in graphite for rectangular stacks has yielded a value of the extrapolation length, d = 1.825 ± 0.025 cm. The pulsed-neutron decay constants in graphite have been measured over a buckling range from 1.946 × 10−3 to 1.230 × 10−2 cm −2 and fitted to three- and four-term power series in the buckling. To fit points at bucklings greater than 6.0 × 10−3 cm−2, a cubic fit is necessary. An iterative method of fitting the decay constants results in an extrapolation length of 1.78 ± 0.01 cm. The diffusion constant was (2.0896 ± 0.0093) × 105cm2/sec, and the diffusion cooling constant was (3.77 ± 0.35) × 106 cm4/sec at a density of 1.689 g/cm3. A technique of correcting the decay constants for the effect of spectral cooling has been developed. The decay constants corrected to room temperature can be fitted as a linear function of the buckling. This method interates on the heat-transfer coefficient, γ, and gives a value of γ = 1633 ± 89 sec−1 for graphite. The heat-transfer coefficient relates the rate of energy transfer from a moderator to a cooled-neutron spectrum. With this approach the entire buckling range can be fitted with three parameters.