ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Steve Kahn, Randall Harman, Vernon Forgue
Nuclear Science and Engineering | Volume 23 | Number 1 | September 1965 | Pages 8-20
Technical Paper | doi.org/10.13182/NSE65-A19254
Articles are hosted by Taylor and Francis Online.
Energy spectra were obtained experimentally for fission fragments escaping from backed films of enriched uranium dioxide that were less than 11 µm thick. The data were reduced to give values for the relative average escape energies (R), escape fractions (S) and energy deposition efficiencies (D). A mathematical model was developed to synthesize these results using a Monte-Carlo-type computer code. This code included the fission-fragment masses, yields, and initial energies, the experimental source-detector geometry, a range-energy relationship, an energy-loss relationship and a function for the pulse-height defect in surface-barrier detectors. Various functions for these last three parameters were used in combination to obtain results that duplicated the experimental spectra and R, S and D values. The agreement was obtained with range proportional to (energy)1/2, the square energy-loss function, and pulse-height defect = A (E) (M-B), where A and B are constants and E and M are energy and mass, respectively. The experimental detection functions were removed from the code, and the spectra and R, S and D values were calculated for a 2π geometry. These values agreed well with those calculated using weighted averages for range and initial energy.