ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
Gilbert Melese-d'Hospital
Nuclear Science and Engineering | Volume 33 | Number 3 | September 1968 | Pages 271-283
Technical Paper | doi.org/10.13182/NSE68-A19234
Articles are hosted by Taylor and Francis Online.
For given maximum surface and internal fuel temperatures and coolant inlet temperature, the optimum degree of artificial roughening of the surface of gas-cooled fast reactor fuel elements is such that the Stanton number is approximately doubled with respect to smooth rods. For given coolant temperatures and maximum clad temperature, the power per unit length of rod increases approximately linearly with increasing Stanton number. Core performance is not sensitive to possible uncertainties in friction factor (±25%), slight decrease in surface heat transfer, or to the fraction of the active rod which is roughened. By proper design, fuel cycle costs remain low (0.5 to 0.6 mil/kWh) for a substantial range of values of maximum clad temperature (600 to 700°C), maximum linear rating (12 to 18 kW/ft), and degree of surface roughening (1.5 to 2.5) with helium cooling of oxide rods.