ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Patrick Miazza, Jacques Ligou
Nuclear Science and Engineering | Volume 105 | Number 1 | May 1990 | Pages 59-78
Technical Paper | doi.org/10.13182/NSE90-A19213
Articles are hosted by Taylor and Francis Online.
The Boltzmann-Fokker-Planck equation has been applied to treat charged-particle slowing down in solids. The discrete ordinates (SN) methods, with exact kernels (I*) or traditional truncated Legendre expansions (SNPL), have been used to investigate well-defined benchmark problems related to atomic displacement cascades. For an overall higher accuracy, it is found that an exact kernel transport calculation is equivalent, in terms of CPU cost, to a SNPN approach in one spatial dimension. Moreover, if the related cross-section processing methods are compared, it is shown that the calculation of the scattering kernels needed by the I* method requires only as much CPU time as the standard P0 matrix evaluation.