ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
W. L. Filippone, S. P. Monahan, S. Woolf, J. C. Garth
Nuclear Science and Engineering | Volume 105 | Number 1 | May 1990 | Pages 52-58
Technical Paper | doi.org/10.13182/NSE90-A19212
Articles are hosted by Taylor and Francis Online.
The Sn method for solving the Spencer-Lewis equation for electron transport has been extended to treat three-dimensional multiregion problems. The flux continuity condition, which holds when the flux is expressed as a function of path length for single material region problems, is generalized for multiregion problems by reexpressing the flux as a function of energy. Expressing the fluxes in terms of fixed energy increments, independent of material, rather than fixed path length increments, results in a set of Sn/diamond-difference equations that are nearly identical in form to conventional Sn/diamond-difference equations. The Sn method is then applied to calculate electron energy deposition due to 200-keV electron beams incident on problem geometries typical of silicon and gallium-arsenide semiconductor microelectronic devices. The energy deposition results were found to compare well with results of ACCEPT Monte Carlo calculations. Computer run times required for the Sn calculations were found to be lower than that required for Monte Carlo by factors ranging from 30 to 50.