ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
I. K. Abu-Shumays
Nuclear Science and Engineering | Volume 105 | Number 1 | May 1990 | Pages 40-51
Technical Paper | doi.org/10.13182/NSE90-A19211
Articles are hosted by Taylor and Francis Online.
Effective utilization of translational or rotational periodic boundary conditions, when applicable, can substantially reduce the cost of solving very large multidimensional elliptic diffusion problems. Application of periodic boundary conditions, however, perturbs the overall matrix structure of the underlying discretized diffusion equations, and special care should be exercised to avoid loss of computational efficiency. For simplicity, only the numerical solution of two-dimensional diffusion problems is discussed. Developing and testing on a vector computer alternative algorithms for implementing periodic boundary conditions within the framework of point and line iteration methods are described. For illustration, only the point Chebyshev and red-black line cyclic Chebyshev iterative methods are considered. Vectorization methods previously developed are extended to allow for periodic boundary conditions. The method of odd-even cyclic reduction as applied to vectorization of the solution of tridiagonal systems is generalized to apply to special matrix equations that are almost of tridiagonal form. Consequently, it is demonstrated numerically on a CYBER 205 computer for model two-dimensional problems that the resulting red-black line cyclic Chebyshev iterative method is computationally superior to the highly vectorizable point Chebyshev iterative method. The superiority of the red-black line methods over the point methods is expected to hold for more complex problems with general mesh triangulations.