ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sung T. Kim, J. J. Doming
Nuclear Science and Engineering | Volume 105 | Number 1 | May 1990 | Pages 16-30
Technical Paper | doi.org/10.13182/NSE90-A19209
Articles are hosted by Taylor and Francis Online.
A new discrete nodal transport method has been developed for general two-dimensional curvilinear geometry by using boundary-fitted coordinate transformation from the general “physical” coordinates to square “computational” coordinates. The metrics that appear in the transformed transport equation are expanded using simple polynomial functions, and the angular divergence term is treated in the same way it is treated in Sn methods for curved geometries. Because the metrics of the transformation depend on the computational coordinates, the technical details of the formal development of the nodal method differ from those of ordinary nodal methods for rectangular geometry. However, the computational process in the transformed rectangular coordinate system is very similar to that used in conventional discrete nodal transport methods. A discrete Sn method has also been developed to solve the boundary-fitted coordinate transformed transport equation. Simple test problems for nonsimple geometries were solved using the zeroth-order (constant-constant) nodal method, the first-order (linear-linear) nodal method, and the Sn method for the same physical and computational grids. The results for the test problems studied showed that, for most performance criteria, the computational efficiency of the zeroth-order nodal method was the highest of the three methods.