ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Scott A. Turner, Edward W. Larsen
Nuclear Science and Engineering | Volume 127 | Number 1 | September 1997 | Pages 22-35
Technical Paper | doi.org/10.13182/NSE127-22
Articles are hosted by Taylor and Francis Online.
A new automated variance reduction method for the Monte Carlo simulation of multigroup neutron transport source-detector problems is described. The method is based on a modified transport problem that can be solved by analog Monte Carlo with zero variance. The implementation of this modified problem is impractical, in part because it requires the exact solution of an adjoint transport problem. The new local importance function transform (LIFT) method is developed to overcome this difficulty by approximating the exact adjoint solution with a piecewise-continuous function containing parameters that are obtained from a deterministic adjoint calculation. The transport and collision processes of the transformed Monte Carlo problem bias source distribution, distance to collision, and selection of postcollision energy groups and directions. A companion paper provides numerical results that demonstrate the efficiency of the LIFT method.