ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
M. J. Lancefield
Nuclear Science and Engineering | Volume 37 | Number 3 | September 1969 | Pages 423-442
Technical Paper | doi.org/10.13182/NSE69-A19117
Articles are hosted by Taylor and Francis Online.
The efficacy of the overlapping group method in fast-reactor analysis is investigated and tested on an idealized fast-reactor configuration. A full transport-theory treatment is adopted and the overlapping group equations are derived by the indirect use of a variational principle. A number of refinements to the basic method have been examined and serve to demonstrate that with a judicious choice of variational functional and trial functions it is possible to obtain accurate estimates not only of the reactivity and other integral quantities but also of the detailed flux. These include: leaving both the space/angle and energy dependence of the trial functions to be determined by the variational principle, incorporating discontinuous trial functions, and the use of a new variational principle for criticality problems that leads to estimates of homogeneous functionals of the unknown flux.