ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Bo Eriksson, Claes Johansson, Martin Leimdorfer, M. H. Kalos
Nuclear Science and Engineering | Volume 37 | Number 3 | September 1969 | Pages 410-422
Technical Paper | doi.org/10.13182/NSE69-A19116
Articles are hosted by Taylor and Francis Online.
The integral equation adjoint to the linear transport equation for neutrons is formulated and prescriptions given for its solution by Monte Carlo methods. The process of tracking is the same as for the usual (i.e., forward) Monte Carlo and may be applied to complex geometry. On the other hand, the scattering process is determined by a kernel which is the transpose of the one used in the forward equation. With the help of suitably defined “adjoint cross sections” this transposed kernel may be written as a superposition of density functions for different reaction types in different nuclides. It is then possible to sample nuclide and reaction sequentially as in the familiar Monte Carlo for the forward process. Most emphasis is put upon the solution of the analytical and numerical problems which arise in calculating and sampling the probability distributions which determine these scattering processes. Detailed treatment is given for generating and using the requisite data for elastic scattering, for discrete level and continuum inelastic neutron scattering: and for (n, 2n) reactions.