ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Keiichi Saito
Nuclear Science and Engineering | Volume 37 | Number 3 | September 1969 | Pages 380-396
Technical Paper | doi.org/10.13182/NSE69-A19114
Articles are hosted by Taylor and Francis Online.
Input-noise sources in at-power reactors are formulated under the basic assumption that a set of macrostochastic variables characterizing the state of the reactors has Markoffian properties. An input-noise source is defined as the ratio between the power-spectral density of fluctuations in the reactor-power level and the square modulus of the source-transfer function. Random birth and death processes of neutrons give rise to a “white” contribution to the input source. Additional contributions are found which have the break (roll-off) angular frequencies determined by the relaxation time constants of the feedback effects on reactivity. These “non-white” terms come from fluctuations in neutron-reaction cross sections caused by temperature variations. The ratio of the non-white to the white terms increases as the reactor power increases. It also depends on the magnitude of the reactivity coefficients of feedback. Before one evaluates the magnitude of the non-white noise term, however, there should be knowledge of some statistical parameters relating the noise to random emission of energy by nuclear fissions, random exchange between the fuel and the coolant in heat transfer reactions and random removal through the coolant flow. The formula for analyzing the power-spectral density of the temperature fluctuations is also derived where the same unknown statistical parameters appear. Measurements of both the power and the temperature fluctuations will serve to determine these parameters whereby one will be able to obtain better information on the time constant and the reactivity coefficient of each feedback effect.