ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. W. Meadows, J. F. Whalen
Nuclear Science and Engineering | Volume 41 | Number 3 | September 1970 | Pages 351-356
Technical Paper | doi.org/10.13182/NSE70-A19093
Articles are hosted by Taylor and Francis Online.
A precise determination of the neutron total cross section of 7Li and carbon has been made in the energy region 100 to 1500 keV. The parameters of the prominent 7Li resonance in the laboratory system are Eλ = 261 keV, Γλ = 36.5 keV and = 594 keV. Corresponding parameters for the principal bound state resonance in carbon are Eλ = −2020 keV and = 540 keV. The carbon data are fitted by σT = 4.830 − 3.55E + 1.587E2 − 0.305E3, where σT is in barns and E is in MeV. Above 500 keV the 7Li data are fitted by σT = 6.929 − 27.018E + 42.721E2 − 27.210E3 + 6.139E4.