ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
T. F. Heenan, C. R. Adkins
Nuclear Science and Engineering | Volume 45 | Number 3 | September 1971 | Pages 279-296
Technical Paper | doi.org/10.13182/NSE71-A19080
Articles are hosted by Taylor and Francis Online.
A method is presented for calculating pointwise average cross sections in the unresolved region. This method can assess the effects of interference and overlap up to the fourth decimal place in cross-section calculations, having the capability of considering the effects of interference among sequences of resonances and of overlap between resonances in a sequence up to third order in each. Thus, the method, while more sophisticated than justified in view of current cross-section data uncertainties, can be used to evaluate the validity of various approximations currently made in the determination of cross sections for use in Doppler calculations. The effects of the level of approximation on cross-section calculations are given, Hwang's method for calculating the overlap in a single sequence is assessed, and the range of validity of Hwang's method and the approximations used in it are evaluated. Results of studies to determine the relative speed and accuracy of methods for calculating the J integral, performing the statistical average, and computing the complex probability integral, W, are also presented. The effects of interference among sequences are shown to be small for the calculation of cross sections and the Doppler change in cross sections over a wide range of composition. The effects of resonance overlap within one sequence, however, may be significant for the calculation of both cross sections and Doppler changes in cross sections in some critical assemblies.