ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
F. Carloni, M. Marseguerra
Nuclear Science and Engineering | Volume 71 | Number 3 | September 1979 | Pages 319-326
Technical Paper | doi.org/10.13182/NSE79-A19069
Articles are hosted by Taylor and Francis Online.
The problem of determining the neutron and count distributions in a multiplying assembly has been independently solved by many authors over the past 30 years. In all cases, the quadratic approximation is used for the probability generating function of the neutrons emitted per fission. In the present paper, this approximation is interpreted as one that almost exactly accounts for the fluctuations of two small samples, one of which is withdrawn from the totality of the neutrons existing at a given time, while the second is taken from all those that have been absorbed up to that time. The observed counts constitute the sample taken from the absorbed neutron population, while the usual distribution of the whole neutron population is obtained from that of the sampled neutrons by performing a suitable change of variable. According to this interpretation, the neutron distribution so obtained may contain rather large errors, and the only case for which we can say that the approximation is safe is that of the count distribution, provided the detector efficiency is kept very small. Indeed, numerical examples show that the relative errors in most cases are of one or two orders of magnitude larger for the neutron distribution than those for the count distribution.